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ABSTRACT 
In this paper, we propose a family of new cumulant 
based inverse filter criteria which only require a single 
slice of cumulants of the inverse filter output for the 
identification and deconvolution of linear time-invariant 
(LTI) nonminimum-phase systems with only non-Gaus 
sian output measurements contaminated by Gaussian 
noise. Some simulation results and application to 
speech deconvolution are provided to demonstrate that 
inverse filtering algorithms based on the proposed new 
criteria work well. 

1. INTRODUCTION 

The identification of a linear time-invariant (LTI) sys- 
tem h(k)  with noisy output z(k) based on the following 
convolutional model: 

z ( k )  = u(k) * h ( k )  + n(k)  (1) 

is very important in many signal processing areas such 
as seismic deconvolution, channel equalization, radar, 
sonar, speech processing and image processing. Re- 
cently, cumulant (higher order statistics (HOS)) based 
identification [l] of nonminimum-phase LTI systems 
with only non-Gaussian output measurements has 
drawn extensive attention in the previous signal pro- 
cessing areas because cumulants, which are blind to 
any kind of a Gaussian process, not only extract the 
amplitude information but also the phase information 
of h(k) ,  meanwhile they are inherently immune from 
Gaussian measurement noise n(k) .  Higher order statis- 
tics based inverse filter criteria [2-61 have been used for 
identification and deconvolution of nonminimum-phase 
systems. In this paper, we propose a family of new cu- 
mulant based inverse filter criteria which only require 
a single slice of cumulants for the identification of h(k)  
as well as the estimation of the desired signal u(k). 

2. NEW HOS BASED INVERSE FILTER 
CRITERIA 

Assume that data z ( k ) , k  = 0,1, ..., N - 1 were gen- 
erated from the model given by (1). Recently, Chi 
and Kung [6] proposed a new inverse filtering algorithm 
based on the following assumptions: 

The system h(k)  is causal stable; it can be mini- 
mum-phase or nonminimum-phase. 

The input u(k) is real, zer-mean, stationary, 
independent identically distributed ( ; . id . ) ,  non- 
Gaussian with Mth-order cumulant YM.  

The measurement noise n ( k )  is Gaussian which 
can be white or colored with unknown statistics. 

(A4) The input u(k)  is statistically independent of n(k). 

Let e (k )  be the output of a stable LTI filter v ( k )  with 
the input z ( k ) .  Their inverse filtering algorithm is to 
find the optimum C(k) such that 

where M 1 3, and C ~ , ~ ( k l ,  k2,. * ,  kw-1) is the Mth- 
order cumulant function of e ( k ) .  It works well, but its 
computational load is-quite heavy because the (M - 
1)-fold summation in JM ( v (  k)) requires all M th-order 
cumulants of e ( k ) .  They also showed that h(k)*C(k)  = 
a6(k  - I )  where 1 is an unknown integer and Q # 0 is 
an unknown scale factor. 

Next, we present a family of new inverse filter cri- 
teria which are described in Theorem 1 as follows: 
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Theorem 1. Let e(k) be the output of a stable LTI 
filter v(k)  with the input z ( k )  generated from (1) un- 
der the previous assumptions (Al) through (A4). Let 
6(k) be the optimum u(k) such that 

(3) 
where M 2 3 and 1 5 m 5 M - 1 are positive integers. 
Then h(k)  * 6(k) = a6(k - I )  as long as 7~ # 0 where 
1 is an unknown integer and a # 0 is an unknown scale 
factor. (The proof of this theorem is omitted here.) 

Obviously, to estimate the inverse filter u ( k )  of h(k)  
by the proposed criteria given by (3) requires a much 
smaller computational load than by Chi-Kung's crite- 
rion given by (2). Assuming that v ( k )  is an FIR filter 
of order L, i.e., 

(4) 

we obtain the desired 6(k) by minimizing 

K 
* c&,,(0,...,0,km = k, ..., kM-1 = k) (5) 

k=-K 

in which C ~ , ~ ( k l  , k2, - ,  AM-^) is the Mth-order sam- 
ple cumulant function of e(k). A Newton-Raphson type 
iterative algorithm is used to find the desired 6(k) be- 
cause J M , ~  is a highly nonlinear function of v ( k ) .  After 
6(k) is obtained, it is trivial to obtain h ( k )  from 6(k) 
except for a scale factor and a constant timedelay. 

3. SIMULATION AND APPLICATION TO 
SPEECH DECONVOLUTION 

In this section, we are to  present some simulation re- 
sults and some results for speech deconvolution by both 
inverse filtering algorithms based on (5) as well as (2) 
and the conventional minimum-phase linear prediction 
error (LPE) filter .a(,) obtained by the well-known 
Burg's algorithm. Both the order L of inverse filters 
v ( k )  and the order of vb(k) were equal to 30. The h i -  
tial guesses [v (O) ,  u(l), ..., u(30)] = [0, ..., 0, 1, vb(l), ..., 
Vb(15)], where l1ub(1), ..., vb(15) are the coefficients of 

the conventional LPE filter of order equal to 15, were 
used to initialize inverse filtering algorithms. 

3.1 Simulation Results 
The driving input u(k) used was a zero-mean Ber- 

noulli-Gaussian sequence (a sparse spike sequence) [2] 
with skewness 73 = 0 and kurtosis 74 = 0.27. A third- 
order nonminimum-phase ARMA system h(k)  taken 
from [2] with transfer function 

(6) 
1 + 0.lz-l - 3 . 2 7 2 5 ~ - ~  + 1 .41125~-~  
1 - 1.9~-1 + 1 . 1 5 2 5 ~ - ~  - 0 . 1 6 2 5 ~ - ~  

H ( r )  = 

was used. The synthetic data z(k) (N = 512) shown in 
Fig. l(a) were generated based on (1) for SNR = 464 
(27 dB) where n(k) was white Gaussian noise. The 
inverse filter criterion used was J4,1 with K = 16. 
The predictive deconvolved data eb(k) (dotted line) are 
shown in Fig. l(b). The deconvolved data e l ( k )  (dotted 
line) obtained by the optimum inverse filter based on 
J4 , l  are shown in Fig. l(c). One can see, from Fig. l(c), 
that el(,) approximates u(k) (solid line) very well ex- 
cept for a scale factor while the constant time-delay 
between el(k) and u(k) is artificially compensated for. 
Comparing Fig. l(b) with Fig. l(c), one can easily see 
that el(k) is indeed a much better estimate of u(k) 
than eb(k) since the LPE filter is inherently blind to 
the phase of h(k) .  These simulation results support 
that the proposed criteria (see (3)) can be used for 
identification and deconvolution of LTI systems. 

3.2 Some Results for Speech Deconvolution 
The speech sound /a : /  uttered by a man was filtered 

by a lowpass filter with cutoff frequency set to 3 kHz 
and then sampled by a 12-bit A/D converter with sam- 
pling frequency 10 kHz. The speech data z ( k ) ,  shown 
in Fig. 2(a), can be viewed as output measurements 
based on (1) in which h ( k )  is the impulse response of 
the vocal-tract filter and u(k) is a pseudo-periodic pulse 
train (for voiced speech). The predictive deconvolved 
data Qb(k) are shown-in F{g. 2(!). The inverse filter 
criteria used include J3,1, J4,1, J4 ,2  with K = 45 and 
Chi-Kung's criterion with M = 3 as follows 

where R S , ~  is the domain of support associated with the 
third-order cumulant function of non-Gaussian moving 
average (MA(q)) processes with order q = 30. The de- 
convolved results are shown in Fig. 2(c) through Fig. 
2(f). One can see, from Fig. 2(b) to Fig. 2(f), that 
all the deconvolved data based on criteria J3,lr J ~ J ,  
j 4 , 2  and js approximate a pseudeperiodic pulse train 
much better than the deconvolved data obtained by 
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the conventional LPE filter since the vocal-tract fil- 
ter associated with the speech data shown in Fig. 2(a) 
is nonminimum-phase. These successful experimental 
results in speech deconvolution also support that the 
proposed inverse filter criteria (see(3)) can be used for 
estimation of (nonminimum-phase) vocal-tract filter as 
well as pitch estimation. 

4. CONCLUSIONS 
In this paper, we proposed a family of new inverse filter 
criteria described in Theorem 1 for identification and 
deconvolution of LTI systems with only non-Gaussian 
output measurements z(k) (see (1)). The proposed in- 
verse filter criteria only require a single slice of Mth- 
order cumulants (see (3)) rather than all Mth-order 
cumulants (in Chi and Kung’s criterion (see (2))) of 
the inverse filter output. Moreover, they are applicable 
for all M 2 3 as long as the Mth-order cumulant YM 
of the driving input u(k) of LTI systems is not equal 
to zero. We also provided some simulation results and 
some experimental results with real speech data to sup- 
port the proposed inverse filter criteria. 
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(c) 
Fig. 1. Simulation results. (a) Synthetic noisy data for 
N = 512 and SNR = 27 dB, (b) true input signal u(k) 
(solid line) and the predictive deconvolved data ea(k) 
(dotted line), and (c) true input signal u(k)  (solid line) 
and the deconvolved data e l ( k )  (dotted line) obtained 
by the optimum inverse filter based on j4.1. 
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Fig. 2. Experimental results for speech deconvolution. (a) Speech data z(k) of phoneme /a:/ uttered by a man 
(sampling rate equal to 10 kHz); (b) _the predictive deconvolved data &.(k); the-deconvolved data obtained by the 
optimum inverse filter based on (c) 53 given by (7), (d) j 3 , ~ ,  (e) 54,1, and (f) J4,2, respectively. 
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